HTML AESTRACT * LINKEES

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 22 8 DECEMBER 2004

Boundary homogenization for trapping by patchy surfaces
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We analyze trapping of diffusing particles by nonoverlapping partially absorbing disks randomly
located on a reflecting surface, the problem that arises in many branches of chemical and biological
physics. We approach the problem by replacing the heterogeneous boundary condition on the patchy
surface by the homogenized partially absorbing boundary condition, which is uniform over the
surface. The latter can be used to analyze any prokileiernal and external, steady state, and time
dependentin which diffusing particles are trapped by the surface. Our main result is an expression
for the effective trapping rate of the homogenized boundary as a function of the fraction of the
surface covered by the disks, the disk radius and trapping efficiency, and the particle diffusion
constant. We demonstrate excellent accuracy of this expression by testing it against the results of
Brownian dynamics simulations. @004 American Institute of Physics.
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I. INTRODUCTION class of methods called “effective medium theoriés¥
o ) These theories treat phenomena in micro-non-uniform
Problems where diffusing particles are trapped by patchy,ngom/regular media by replacing the real medium by a
surfaces are abundant in chemical and biological physiCs;csitious uniform medium with prescribed effective param-
Ligand binding to cell surface receptdréreactions on sup-  gters The specific feature of the problem under study is that
ported  catalysts, electric current through arrays of homogenize nonuniform boundary condition. The idea

mlcroelectrodeé,.and water_ exchange in plaftare just a underlying homogenization in our case is that nonuniformity
few from a long list of practical examples. Patchy cells, elec-

d | b deled flocti ; of the boundary manifests itself only near the surface. The
trodes, or cata_ysts can be modeled as re ecting sur ac?‘ﬁemory about local properties of the boundary decays with
covered by partially absorbing trapsn this paper we con-

the distance from the boundary and the fields of fluxes and

sider the case of randomly distributed, nonoverlapping circu- . . . . )
y ppINg concentrations become uniform in lateral directions.

lar traps. We approach thg problem by replacing the hetero- We use a computer-assisted boundary homogenization
geneous boundary condition on the patchy surface by the

: d . - . procedure to evaluate the effective trapping rate of the sur-
homogenized partially absorbing boundary condition, whic . : . .
; X . . ’ face. Our main result is the expression for the effective trap-
is uniform over the surfacéig. 1). This uniform boundary

condition is universal in the sense that it can be used t mg(éag)e ga{znemrigé%? gvh'f)h ;ur;](;tlor:hIZ(g; de_:nerc;tgl de-
analyze both internal and external problems in which diffus- q. (2.9. TNIS exp ! W W bping

ing particles come to the trapping surface from inside a cayPends on the fraction of the surface covered by the disks, the

ity or from its outside. In addition this boundary condition disk radius and trapping efficiency, and the particle diffusion

can be used to analyze both steady state and time-depend&ﬁpfc’tant‘ To obtain ﬂ,"s result, we first Con,StrUCt an approxi-
problems. mating formula that fits the effective trapping rates deduced

Boundary homogenization discussed below belongs to gom simulations with perfectly absorbing disks. A conven-
tional “addition of resistances” trick is then used to extend
this formula to partially absorbing disks. Excellent accuracy

dpermanent address: Karpov Institute of Physical Chemistry, Ul ; ; ; ; ; ; ;
Vorontsovo Pole 10, 103064 Moscow K-64, Russi. of this approximation is demonstrated by testing it against
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FIG. 1. Schematic representation of the homogenization procedure. The ®
original heterogeneous boundary condition on the surface replaced by
the homogenized partially absorbing boundary conditioncharacterized 0.5/
by the uniform trapping rate. On the heterogeneous surface, the boundary 14
condition is DV ,G(r,t|rg) = kqiskG(r,t|rg) on the trap surfaces and
V.G(r,t|ro) =0 otherwise, wher&(r,t|r,) is the particle propagator amd 0 % + + 01
is the surface normal vector. The boundary condition over the entire homog- 0 Q1 0.2 0.3 0.4

enized surface is given b9V .G(r,t|ro) = «G(r,t|r). trap surface fraction (o)

FIG. 3. Dimensionless effective trapping ratesx/4D obtained from
. SUMMARY OF RESULTS FOR SURFACES simulations with partially absorbing disks and predicted by &agl) with

COVERED BY PERFECTLY ABSORBING DISKS F(o) given in Eq.(3.3). The results are presented for disks witt;_isk _
=0.1, 1, and 10. The upper curve corresponds to perfectly absorbing disks

The homogenization of the boundary condition on a re-{*aisk==)-
flecting surface randomly covered by nonoverlapping per-
fectly absorbing disks was first introduced by Shoup and
Szabd® in their intuitively appealing derivation of the Berg JBP—|BP
and Purcell(BP) result for the stationary flux of diffusing N N
particles to a reflectifgsphere covered by small perfectly Herec., is the ligand concentration at infinity. The BP
absorbing disks. When analyzing ligand binding to cell surate constank3P is written in the Collins—Kimball form, i.e.,
face receptors BP approximated a cell whheceptors by a 55 5 product of the Smoluchowski rate constakg,,
reflecting sphere of radiuR with N small perfectly absorb- —47DR, and the trapping probability for a particle that

ing disks of radiusa on the surfacea<R. Ligands were  starts from the surface of a uniformly absorbing sphere of
modeled as point Brownian particles with diffusion constantadiys R having the surface trapping ratexgp

D, which were trapped upon the first contact with diSk'=deisk/(47TR2)- In these equationky;c=4Da is the sta-
shaped receptors. . . _tionary rate constant for a perfectly absorbing disk of radius
BP derived an approximate expression Ffor the stationary |ocated on the otherwise reflecting pldfelhese results

flux of particles to the trap-covered sphed§;: were tested by Brownian dynamics simulatidfs.

We can write the BP result for the effective trapping rate

N .
Cor KRk Kaisk 2.

mT NKgisk

3 in the form
4D _Na?
2.5- KBP—%U, O'—H, (22)
° 2 whereo is the trap-covered fraction of the spherical surface
e and 4D/(a) is the ratio ofky;sy to the disk area. Using an
1.5 effective medium treatment, Zwanzi{gw) extended the BP
il result to arbitrary surface coverages:
- 1 4D o 03
0.5! | i Kgw=1 5 KBP= T o 23
01 02 03 04 05 A simple derivation of this formula is given in Appendix A.

trap surface fraction (o) lll. EFFECTIVE TRAPPING RATE FOR SURFACES

FIG. 2. FunctionF(o) obtained from simulations and predicted by the COVERED BY PERFECTLY ABSORBING DISKS

Berg—Purcell(BP) and Zwanzig(Zw) formulas given in Eq(3.2) and the From dimensional arguments it follows that the trapping
approximation in Eq(3.3). In simulations with spherical geometry we chose

D=1 andR=1. Simulations were run with disks of radi=0.025 (CJ), rate e_ntermg into the homogenized boundary condition, can
0.05(0), 0.1(A), and 0.2(+%); the surface fractiow was varied from 0.01  be written as

to 0.5. The values df (o) were computed fron{t) determined from simu-

lations with 1§ diffusing particles. For each of the particles the simulations _ 4D = 31

were run with a new random disks’ configuration. In simulations with planar k= E (o), 3.
geometry(x), we takea=1 and determiné& (o) from (t) found in simula-

tions with 16 diffusing particles in the regime when) linearly depends on ~ whereF (o) is a dimensionless function of the fraction of the

L (L=1000). In these simulations, 200 traps were generated using the rarsyrface covered by the traps. Thus, homogenization of the

dom sequential addition algorithm in a periodic geometry. The size of th TRRE ; ; ;
unit cell was computed from the trap surface fraction. With 200 traps, av(?patchy surface reduces to finding a dimensionless function of

eraging over trap configurations did not lead to improvement of results. Ithe trap_surface fraction. This funCti(_)n i_S L_miV_e_rsal for any
both cases, the relative error of simulation results is within 5%. surface if the boundary homogenization is justified. Whether
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this is really the case or not depends on the relation between R
the disk radius and characteristic lengths associated with the (ty= 3k (4.1
surface. The homogenization is justified when the smallest
characteristic length is much greater than the disk radius. T

FunctionF (o) tends to zero as—0 and to infinity as ;Lhe bogndary homogenlztﬂnon IS jUSFIergoVYheIEE.R. Eln
o—1, since the plane becomes perfectly reflecting and ab-, IS TegIme, We can use the expression g|ve.n N =q.
sorbing in these limiting cases. Note that the trapping raté?"l) in order to relate the average lifetime o).
becomes infinite(k—), when a—0 at o=const. This

means that the plane may act as perfectly absorbing when the (t)y= maR 4.2
disks cover only a very small fraction of its surface. 12DF (o)’ '
The Berg—Purcell and Zwanzig expressions#dead to
F(o) of the form This relation was used to determifi¢o) from (t) found in
o simulations.
Fep(o)=0, Fylo)= =g (3.2 The simulations were run witldb=R=1 and disks of

radiia=0.025, 0.05, 0.1, and 0.2. The surface fractiowas

While Fgp(o) describes only the limiting behavior &(¢) ~ Vvaried from 0.01 to 0.5. The values B{o) found in simu-
when o<1, F,,(o) captures both of the asymptotes: it re- lations witha=0.025 and 0.05 are practically identical. This
duces toFgp(0) aso—0 and diverges as—1. The range of Means that the boundary homogenization is justified when
applicability of F,,() is unknown. Our numerical results the disk radius is smaller than 0.05_ of thg radlgs of the
show thatF (o) grows witho much faster than it is predicted SPhere. These values were used to fit the simulation results
by F2u(c) (Fig. 2. We found that, over a wide range of ~ Y N approximating formul&(o)=Fz,(e)(1+Ad®). Fit-

F(o) is accurately approximated by the following expres-ting leads toA=3.8 andB=1.25 as given in E¢(3.3). Fig-
sion: ure 2 shows that Eq.3.3) provides an extremely accurate

approximation for numerically determined valuesFofo’).

The difference between the approximation and numerical re-

sults grows with the disk radius. Systematic but small devia-
(3.3y  tions from the formula have been found&t0.1 and 0.2
(the deviations are too small to be seen in Fig. 2
In the planar geometry, we computed the average life-
e of particles diffusing in a layer of thickneds The

F(0)=Fzu(0)(1+3.80%9 = %(1+3.801'25)_

This is the main result of this paper. Functibiio) can be
used to generalize the BP expression for the rate constantj[

Eq. (2.1: upper boundary of the layer was perfectly reflecting. The
Na2\ 2 lower boundary was randomly covered by perfectly absorb-

Nkgisel 1+ 3.8( —2) F| ing disks of unit radius, which did not overlap. The particles

k=Ko 4R were initiated uniformly over the lower trap-covered bound-

the average lifetime of particles starting from the uniformly

B( Naz) 1-25| - 34 ary. To determind=(o), we took advantage of the fact that
1+3.
absorbing lower boundary is given by

Na?
kSm 1_E +deisk 4R2

This rate constant reduceskgp when the trap surface frac-

tion o=Na?/(4R?) is small compared to unity. L
(H=—, (4.9
K
IV. COMPUTER-ASSISTED BOUNDARY wherex is the trapping rate of the boundary. This expression
HOMOGENIZATION can be derived similarly to the analogous result in &ql)
i L for the spherical geometry.
To find the approximating formula foF (o), we per- To check the validity of the boundary homogenization,

formed Brownian dynamics simulations in spherical and pIa'simulations were performed with layers of different heights.

nar geometries. In simulgtio_ns with sph_erical geometry, W&Simulations, from which we determinéd( o), were done in
computed the average lifetime of particles diffusing in &y, regime where the average lifetime linearly depends on
spherical cavity of radiuR. The particles were initiated uni- the height of the layer. Assuming that the boundary homog-

formly over the surface of the sphere and allowed to diffusg,,j; ation is justified and thatis given by the relation in Eq.
until they were trapped by perfectly absorbing nonoverlap—(3 1), we can write

ping circular disks of radiuga. The disks were randomly
located on the surface of the sphere.

To determineF (o), we use the relation between the ) —
average particle lifetime in the spherical cavity with uniform 4DF(o)
partially absorbing wall and the wall trapping rake As
shown in Appendix B, for particles starting from the surfaceAs expected, the values &f(o) found in simulations fall
of the sphere, the average lifetini® is independent of the right on top of the curve predicted by the approximation
particle diffusion constant and given by formula in Eq.(3.3 (Fig. 2.

mralL
(4.4
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V. PARTIALLY ABSORBING DISKS

We use the following approximation to find the effective
trapping rate in the case when the disks are partially absorb-

ing:
1 Ta 1
—= + :
k 4DF(0) okyisk

Here, kis is the trapping rate of the disk surfageot to be
confused withky,=4Da). This formula interpolates the
effective trapping rate between the limiting cases of perfectly
absorbing and perfectly reflecting disks. Similar interpolation
formula was suggested by Zwanzig and Sz&bBor per-
fectly absorbing disks Kgisk=) the formula leads to the

eXpres,'smn for in Eq. (3.1). When the d,ISkS are perf(_aCtly FIG. 4. Survival probabilities computed from simulations with the patchy
reflecting («qisk=0) the effective trapping rate vanishes gyraces(thick gray curvé and obtained solving the problem with homog-
since the entire surface is perfectly reflecting. In the limitingenized boundariethlack curve. Logarithms of the survival probabilities are

case of smalb, F(0)=Fgp(0)=0 and the relation in Eq. shown in the inset. Simulations were done in the spherical geometry with
(5.1) takes the,form perfectly absorbing disks covering 5% and 50% of the surface of the sphere.

Particle initial positions were uniformly distributed over the volume of the

(5.9

survival probability

1 1.5

dimensionless time (Dz/R 2)

1 1/wa 1 sphere. In the simulation®=D=1 anda=0.025. Survival probabilities
—=——+ ) , (5.2 were computed on the basis of*lBajectories. For the homogenized prob-
k 014D  Kyisk lem, the survival probability was found by numerical inversion of the

. . o Laplace transform in EqB13).
which is the Zwanzig—Szabo generalization of the BP resulf occ ransiorm i 4By

in Eq. (2.2) to the case of partially absorbing diskswhen

0—1, F(0)— and x approachesysi as it should. —  cell cultures and coculturéé® In conclusion, we believe
We have found that the approximation in E§.1) is in  that boundary homogenization is a useful technique that sig-
excellent agreement with the results of Brownian dynamicsificantly simplifies both analytical and numerical analysis of

simulations of the trapping in planar geometRig. 3. The 5 |arge number of problems in which diffusing particles are
simulations were performed similarly to the case of perfectlytrapped by patchy surfaces.

absorbing disks with particles initiated uniformly over the
patchy surface. To dgal with the partially absorbing boundaryACKNOWLEDGMENTS
conditions on the disk surface, we used recently reported
adaptive time-step algorithm that combines the first-passage A.M.B. thanks Attila Szabo for very helpful discussions.
time techniques with sampling of exact one-dimensionalu.A.M. and V.Yu.Z. thank the Russian Foundation for Basic
propagators? The trapping rates were extracted from simu-Research for suppoiGrant No. 03-03-32658 S.Y.S. and
lations using Eq(4.3) as we did in the case of perfectly M.I.M. were supported by the NSfrant No. 0211756
absorbing disks.

APPENDIX A: ZWANZIG'S FORMULA FOR «
VI. CONCLUDING REMARKS IN EQ. (2.3)

We have combined dimensional arguments with Brown-  Consider a particle diffusing in a spherical cavity of ra-
ian dynamics simulations in order to homogenize boundarylius R with N nonoverlapping small perfectly absorbing cir-
conditions on surfaces randomly covered by nonoverlappingular disks of radiusa randomly located on its surface,
circular traps. Our homogenization procedure requires the<R. The average lifetime of the particle, which starts from
identity of the average lifetimes in the presence of patchythe cavity centefty)center iS given by
and homogenized boundaries. We have found that homog- 2 RZ 1-o
enized boundary excellently reproduces not only the averagq ) center= == + (1= o) {(t\)surr~ = + ———(t1)surs-
lifetime, but the survival probability as well. Figure 4 dem- 6D 6D N
onstrates excellent agreement of the survival probabilities (A1)
found in simulations with patchy surfaces and those foundHereR?/(6D) is the mean first-passage time from the cavity
for the problem with the homogenized boundaries. center to its wall[cf. Eq. (B10) from Appendix B withry

The boundary homogenization discussed in this paper=0 andx=c«], o is the surface fraction covered by the disks,
can be extended to a number of related problems with patchyhich is given in Eq(2.2), and(ty)s.s iS the average life-
surfaces. In particular, boundary homogenization can be catime on condition that the particle starting points are uni-
ried out for surfaces with regular distributions of disk-shapedormly distributed over the reflecting part of the cavity wall.
trap$ as well as for surfaces regularly or randomly coveredEquation(A1) accounts for the fact that the fractionof all
by hemispherical traps. A real patchy surface may be coveretiajectories lands right on the disks and is trapped instantly.
by nonidentical traps, e.g., the trap parametsize and trap- For this fraction, the average lifetime is the mean first-
ping raté may fluctuate. Homogenization of such surfacespassage tim&?/(6D). In the second equality we have ad-
might be of use for the analysis of experiments with adherendlitionally assumed thatty)sui~{t1)sur/N, i.e., the aver-
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age lifetime in the presence of disks isN times smaller

than the average lifetime in the presence of the only disk.

This is a reasonable approximation whens not too large.
To estimate(ty)s, s we use the fact that whemis small

enough, searching for the disk takes much more time tha

equilibration in the cavity with perfectly reflecting wall.

Keeping this in mind, we can use the result from Grigoriev

etal’® to write (t;)qui=Vea/(4Da), where Vg,
=47R%3 is the cavity volume. Substituting this expression
for (tq)surs into Eq. (A1) we arrive at

R? (1-o)7R®

3DaN (A2)

<tN>Center:ﬁ +

Zwanzig's result fork in Eq. (2.3) arises instantly if one
compares this expression with the result in E810) from
Appendix B withr,=0.

APPENDIX B: THE AVERAGE LIFETIME IN EQ. (4.1)

Consider a particle diffusing in a spherical cavity of ra-

dius R with a partially absorbing surface. The particle starts

from the point located at distancg from the cavity center.
The particle propagator or Green’s functi@{r,t|r,) satis-
fies the diffusion equation,

G _ D o Z&G B1
Ttz (B1)
with radiation boundary condition on the cavity wall,
aG(r,t|rg)
—D——— =«kG(Rt|ryp) (B2)
ar B
r=R
and the initial condition,
G(r,t|ro)=8(r—ro)/(4mr3). (B3)
The particle survival probability(t|r) is given by
R
S(t|r0)=47rf r’G(r,t|ro)dr. (B4)
0
Respectively, its average lifetime is
= [ dS(tfrg) *
(t(ro)>=f e dt=f S(t|ro)dt. (BS)
0 0

The propagator considered as a functiorr @Eatisfies

i)

the initial condition in Eq(B3) and radiation boundary con-
dition on the wall

oG(r,t|r
_p/Ctro)
arg

G D d
ot p2arg

, G

(B7)

= kG(r t|R).

ro=R

Using the definitions in Eq9B4) and (B5) one can check
that the average lifetime satisfies

gttt

0
drg
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and the boundary condition

d(t(r
_p dtro) = k(t(R)). (B9)
drg (=R
golving this equation one finds
22
(tro)=—"%65" "3 (B10)

For particles that start from the cavity wall this reduces to the
expression for the average lifetime given in £4.1).

Finally we derive an expression for the Laplace trans-
form of the survival probability for the case of uniform dis-
tribution of the particle starting points inside the sphere. It
follows from Egs.(B4) and (B6) that the Laplace transform
of the survival probability, S(s|ro) =[5 exp(—stS(t|ro)dt,
satisfies

D d d<é<s|ro>>> :
—_—— 2— — —
2 dr0<r° ar, s9s|rg)—1 (B11)
with the boundary condition
d(S(slr -
—D<S(—|0)> = k(S(s|R)). (B12)
dl’o ro=R

Solving this equation and averaging the solution over the
starting points one finds

Su(s)=3

1 .
jo r%S(ser)dro
. 3%(\/Scoshys—sinh\3)
3[(1—"%)sinh\S—\/Scoshys]

whereS=sR/D, k= «R?/ D, and subscripti indicates that
this survival probability corresponds to the case of uniform
distribution of the starting points. The survival probabilities
for the problems with homogenized boundaries shown in
Fig. 4 are obtained by inverting this Laplace transform.
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